Cheatsheet

Floating Point Numbers

Floating Point System Parameters

Error Measures

Floating Point Arithmetic

Interpolation & Splines

Polynomial Interpolation

Cubic Splines

Hermite Interpolation

Ordinary Differential Equations (ODEs)

First-Order ODE Methods (for y(t)=f(t,y(t)), y(t0)=y0)

Method Formula Error Stability
Forward Euler yn+1=yn+hf(tn,yn) O(h2) Conditional: h<2λ
Backward Euler yn+1=yn+hf(tn+1,yn+1) O(h2) Unconditional
Improved Euler yn+1=yn+hf(tn,yn)
yn+1=yn+h2[f(tn,yn)+f(tn+1,yn+1)]
O(h3) Conditional: h<2λ
Midpoint yn+12=yn+h2f(tn,yn)
yn+1=yn+hf(tn+h2,yn+12)
O(h3) Conditional
RK4 k1=hf(tn,yn)
k2=hf(tn+h2,yn+k12)
k3=hf(tn+h2,yn+k22)
k4=hf(tn+h,yn+k3)
yn+1=yn+16(k1+2k2+2k3+k4)
O(h5) Conditional

Higher-Order ODEs

Adaptive Time-Stepping

  1. Use two methods of different order
  2. Estimate error: err=|yn+1Ayn+1B|
  3. Adjust step size: hnew=hold(tol|yn+1Ayn+1B|)1/p

Error Analysis